Separable programming problems with the max-product fuzzy relation equation constraints

Authors

  • Ali Abbasi Molai School of Mathematics and Computer Sciences, Damghan University, P.O.Box 36715-364, Damghan, Iran
  • Behnaz Hedayatfar School of Mathematics and Computer Sciences, Damghan University, P.O.Box 36715-364, Damghan, Iran
  • Samaneh Aliannezhadi School of Mathematics and Computer Sciences, Damghan University, P.O.Box 36715-364, Damghan, Iran
Abstract:

In this paper, the separable programming problem subject to Fuzzy Relation Equation (FRE) constraints is studied. It is decomposed to two subproblems with decreasing and increasing objective functions with the same constraints. They are solved by the maximum solution and one of minimal solutions of its feasible domain, respectively. Their combination produces the original optimal solution. The detection of the optimal solution of the second subproblem by finding all the minimal solutions will be very time-consuming because of its NP-hardness. To overcome such difficulty, two types of sufficient conditions are proposed to find some of its optimal components or all of them. Under the first type sufficient conditions, some procedures are given to simplify the original problem. Also, a value matrix is defined and an algorithm is proposed to compute an initial upper bound on its optimal objective value using the matrix. Then, a branch-and-bound method is extended using the matrix and initial upper bound to solve the simplified problem without finding all the minimal solutions. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Linear Objective Function Optimization with the Max-product Fuzzy Relation Inequality Constraints

In this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. Since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. We study this problem and capture some special characteristics of its feasible domain and optimal s...

full text

Optimization of linear objective function subject to Fuzzy relation inequalities constraints with max-product composition

In this paper, we study the finitely many constraints of the fuzzyrelation inequality problem and optimize the linear objectivefunction on the region defined by the fuzzy max-product operator.Simplification operations have been given to accelerate theresolution of the problem by removing the components having noeffect on the solution process. Also, an algorithm and somenumerical and applied exa...

full text

Monomial geometric programming with fuzzy relation inequality constraints with max-product composition

Monomials function has always been considered as a significant and most extensively used function in real living. Resource allocation, structure optimization and technology management can often apply these functions. In optimization problems the objective functions can be considered by monomials. In this paper, we present monomials geometric programming with fuzzy relation inequalities constrai...

full text

RESOLUTION OF NONLINEAR OPTIMIZATION PROBLEMS SUBJECT TO BIPOLAR MAX-MIN FUZZY RELATION EQUATION CONSTRAINTS USING GENETIC ALGORITHM

This paper studies the nonlinear optimization problems subject to bipolar max-min fuzzy relation equation constraints. The feasible solution set of the problems is non-convex, in a general case. Therefore, conventional nonlinear optimization methods cannot be ideal for resolution of such problems. Hence, a Genetic Algorithm (GA) is proposed to find their optimal solution. This algorithm uses th...

full text

linear objective function optimization with the max-product fuzzy relation inequality constraints

in this paper, an optimization problem with a linear objective function subject to a consistent finite system of fuzzy relation inequalities using the max-product composition is studied. since its feasible domain is non-convex, traditional linear programming methods cannot be applied to solve it. we study this problem and capture some special characteristics of its feasible domain and optimal s...

full text

Monomial geometric programming with fuzzy relation equation constraints

In this paper, an optimization model with an objective function as monomial subject to a system of the fuzzy relation equations with max-bounded difference (maxBD) composition operator is presented. We firstly determine its feasible solution set. Then some special characteristics of its feasible domain and the optimal solutions are studied. Some procedures for reducing and decomposing the probl...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 1

pages  1- 15

publication date 2019-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023